

High Performance SWIR HgCdTe 320x256/30µm FPAs at Teledyne Judson Technologies

<u>Henry Yuan</u>, Jiawen Zhang, Jongwoo Kim, Carl Meyer, Joyce Laquindanum, Joe Kimchi, JihFen Lei

221 Commerce Drive, Montgomeryville, PA 18936

SPIE-OP, Infrared Sensors, Devices, and Applications VIII, San Diego, CA, paper 10766-34

August 23, 2018

Outline

- Introduction
- Detector and FPA fabrication and Characterization
- 2.5µm cutoff FPA performance
- 2.9µm cutoff FPA performance
- Summary

SWIR FPAs, 2-3µm Cutoff

- HgCdTe is still the primary material choice for SWIR FPA at present – Over Ex-InGaAs, SLS/nBn
- Advanced FPA technologies developed by a number of companies over decades
 - Large format, small pixel
 - Military applications
 - Space astronomy applications
- In recent years, increasing demands in
 - Commercial markets
 - Commercial space applications

Requirements

- Low cost
- High operating temperature
- High performance
- Small format

320x256/30µm FPA Fab

Nikkon Microscope

- LPE wafers, as grown P-on-n on CdZnTe, used in early time
- MBE wafers, N-on-n on CZT, As⁺ ion-implantation \rightarrow P-on-n, grown within Teledyne, used now
- Mesa structure with wet etch
- FLIR ISC9809 ROIC, CTIA input, 2 gains (wells), 170K e⁻ & 3.5M e⁻

In-bumped array, top view

In-bumped array, 3D topography

Zygo profilometer

FPA Characterization

- 2 cutoff wavelengths in general
 - 2.5µm and 2.9µm
- 4 temperatures
 - ~23°C, ~5°C, -70°C, LN₂
- Detector "dark" current
 With and without cold shield
- NEI (noise equivalent irradiance)
- Bad pixel map, operability
- IR imaging
- Spectral responsivity/QE

Integrated lab camera/dewar

- On PEC (performance evaluation chip) diodes with backside illumination
- Pixel capacitance
 - Measured with a prober (fF limit)
- Bakeability test

FPA in Various Packages

84-pin LCC

P34DIP with 1-stage TEC (-25°C)

MC-50 with 4-stage TEC (-85°C)

J508 with RICOR micro-cooler (LN₂)

2.5µm FPAs, Spectral Responsivity & QE

• Peak QE ~85%, single layer ARC

"Dark" Current Histogram and Temperature Dependence

- Background photocurrent dominant at -70°C with FOV ~ 100°, 6.7X higher than dark current (1.3pA vs. 195fA)
- Dark current matches Rule-07 model at high temperatures (> -30°C)

–Low temperature ${\rm I}_{\rm d}$ data affected by background leak and/or camera electronics

Background and/or camera limit

• 2.5µm MBE

NEI Histogram and Temperature Dependence

Background

limit

- FOV ~100°, BPF = 1850-2400nm. NEI is background limited near and below -70°C
- NEI = 1.9E9 ph/cm²-s achieved on best unit at -70°C
- Lower NEI could be achieved under smaller FOV, or similar NEI value could be achieved at up to -55°C

Thermal

limit

Bad Pixel Map and Pixel Capacitance

2.5μm MBE, #193A-11, -70°C, High Gain, Operability = 99.95%

LPE 2.5µm cutoff, 320x256/30µm at room temperature Pixel Capacitance (fF) 002 05 120 002 -W#188A-3 -W#188A-4

Room Temperature

• Excellent operability, no bad pixel cluster

• $C_d \sim 100 fF$ at reverse biases

Reverse Bias (mV)

2.5µm FPA Imaging at -70°C

Reflective image under bright room light

Thermal image in the dark

• Similar FPAs, similar camera setup

Bake-ability Test, 136h/80°C in Vacuum Oven

- 2.5µm LPE, -70°C, no cold shield
- Mean I_d: 4.0pA \rightarrow 3.9pA
- NU: 8.2% \rightarrow 6.8%
- Bad pixel count: $411 \rightarrow 468$
- Operability: $99.50\% \rightarrow 99.43\%$

No performance degradation

2.9µm FPAs, Spectral Responsivity & QEAs

Peak QE ~85%, single layer ARC

"Dark" Current Histogram and Temperature Dependence

NEI Histogram and Temperature Dependence

- Typical NEI = 3.4E9 ph/cm²-s at -70°C
- Lower NEI could be achieved under smaller FOV, or similar NEI value could be achieved at up to -40°C

Bad Pixel Map and Pixel Capacitance

2.8μm MBE, #198B-1, -70°C, Low Gain, Operability = 99.89%

• Excellent operability, no bad pixel cluster

Room Temperature

 $\bullet\,{\rm C_d}$ ~ 100-300fF at reverse biases

2.9µm FPA Imaging at -70°C

Reflective image under bright room light

Thermal image in the dark

• Same FPA, same camera setup, taken at same time, looking at same scene

- Excellent operability and detector yield achieved with state-of-the-art Teledyne MBE materials on CZT and a P-on-n mesa structure based process
 - 2.5 μm and 2.9 μm cutoff SWIR FPAs
 - Typical operability ~99.9% with few or no bad pixel cluster
 - Low cost production
- Dark current matches or below Rule-07 at high temperatures (> -70°C)
 - 275pA and 372pA at room temperature for typical 2.5µm and 2.9µm FPAs respectively
 - 195fA and 487fA at -70°C for typical 2.5 μm and 2.9 μm FPAs respectively
- NEI limited by background at -70°C with FOV ~100°
 - 1.9E9 Ph/cm²-s for best 2.5 μm FPA
 - 3.4E9 Ph/cm²-s for typical 2.9µm FPAs
- NEI would be even lower under smaller FOV
 - Similar NEI could be achieved at higher temperatures, up to -55°C for 2.5µm FPAs and up to -40°C for 2.9µm FPAs
- Peak QE ~85% with a single layer AR coating
- Pixel capacitance ~100-300fF at reverse bias of 100-200mV

TELEDYNE JUDSON TECHNOLOGIES Everywhereyoulook[™]