J16PS Position Sensors

A Ge position sensor consists of a single element photodiode with a quadrupole electrode geometry. These devices can provide linear X-Y beam position information for lasers and other infrared beams. Positioning information is determined as shown in Fig. 2. The PA6:4C preamplifier is recommended for Teledyne Judson position sensitive detectors.

Typical Specifications Linear Position Sensors

<table>
<thead>
<tr>
<th>Model Number</th>
<th>Part Number</th>
<th>Detector Type</th>
<th>Wavelength Range</th>
<th>Active Size "2L" (µm)</th>
<th>Linear Position Zone (Dia.) (mm)</th>
<th>Typical Position Resolution (µm)</th>
<th>Typical Interelectrode Resistance (ohms)</th>
<th>Peak Responsivity</th>
<th>Detector Temp.</th>
<th>Package Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>J16PS-P6-S10M-HS</td>
<td>460284</td>
<td>Ge</td>
<td>0.8 - 1.8</td>
<td>10 x 10</td>
<td>6</td>
<td>5</td>
<td>~ 100</td>
<td>0.6</td>
<td>22°C</td>
<td>TO3</td>
</tr>
<tr>
<td>J16PS-8E6-S05M-HS</td>
<td>460743</td>
<td>Ge</td>
<td>0.8 - 1.8</td>
<td>5 x 5</td>
<td>3</td>
<td>5</td>
<td>~ 100</td>
<td>0.6</td>
<td>22°C</td>
<td>TO8</td>
</tr>
</tbody>
</table>

Device Options

Teledyne Judson's unique "-HS" option Ge position sensing device has a p-i-n structure for extremely low capacitance and excellent speed of response, with R_D and noise similar to the standard device. This option is ideal for pulsed laser diode monitoring and general use above ~10 KHz.
J16PS Room Temperature Germanium Position Sensors

Sample Test Data

For 5mm Germanium Position Sensor

Part Number:

460743

Description:

J16PS-8E6-S05M-HS

Serial Number:

49961-1

<table>
<thead>
<tr>
<th>Slant Resistance R_D at 22°C (ohms)</th>
<th>Dark Current $I_D@1V$ (µA)</th>
<th>Dark Current $I_D@3V$ (µA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12739</td>
<td>3</td>
<td>4</td>
</tr>
</tbody>
</table>

Detector Series Resistance, R_S (ohms)

<table>
<thead>
<tr>
<th>Adjacent Contacts at 22°C</th>
<th>$(R_S^{1.2})$</th>
<th>$(R_S^{1.4})$</th>
<th>$(R_S^{3.2})$</th>
<th>$(R_S^{3.4})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>max (R_S^{Adj}) = 80</td>
<td>77</td>
<td>80</td>
<td>79</td>
<td>80</td>
</tr>
</tbody>
</table>

Non-Uniformity Specification = \(\leq 5\% \)

Non-Uniformity = \(\frac{\text{max} \ (R_S^{Adj}) - \text{min} \ (R_S^{Adj})}{\text{max} \ (R_S^{Adj})} \times 100 = 3.75 \% \)

Detector Series Resistance, R_S (ohms)

<table>
<thead>
<tr>
<th>Diagonal Contacts at 22°C</th>
<th>$(R_S^{1.3})$</th>
<th>$(R_S^{2.4})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>max (R_S^{Diag}) = 85</td>
<td>84</td>
<td>85</td>
</tr>
</tbody>
</table>

Non-Uniformity Specification = \(\leq 5\% \)

Non-Uniformity = \(\frac{\text{max} \ (R_S^{Diag}) - \text{min} \ (R_S^{Diag})}{\text{max} \ (R_S^{Diag})} \times 100 = 1.176 \% \)

Responsivity, R_λ at 1300nm = 0.70 A/W
Responsivity, R_λ at 850nm = 0.22 A/W
1300-1650 nm Two Dimensional Position Sensors

The J16PS-8E6-S05M-HS is a room temperature Germanium position sensor consisting of a single element photodiode with the improved tetra-lateral geometry called the Pin-Cushion Type. The active size of the detector is 5mm x 5mm. It has 4 electrodes (cathodes) at the corners on the front surface of the photodiode, and the common anode is at the back surface. A light spot within the spectral range of germanium generates a photocurrent which flows from the incident point through the resistive layers to the electrodes. If the resistivity of the sheet layer is extremely uniform, then the photocurrent at each electrode is inversely proportional to the distance between the incident spot and the electrodes.

A typical test data sheet of the detector characteristics supplied is shown in Figure 1.

A detailed analysis of a detector was done and some of the data is presented. The entire surface of the detector was scanned using an automated spot scanning set-up. A 1550nm laser diode source chopped at 1KHz was used. The laser power was regulated to give a constant output. The spot size was about 120um. The scanning was done in 100um steps. The current outputs of the 4 electrodes were fed through a 4-channel transimpedance amplifier and the rms voltage value of the fundamental(1KHz) was recorded to 4 separate files through software. Current flows into each electrode. The magnitude of the current will depend on the distance of the electrode from the spot position.

A 3D plot of the sum of all 4 voltage outputs is plotted as shown in Figure 2. The transimpedance gain of each channel was 10Kohm. The sum of all 4 currents from each electrode should be a constant depending on the uniformity of the surface. The 3D plot of the sum of the 4 voltages as a function of position depicts the uniformity of the detector surface.

The normalized x and y position values are computed using the equations and a contour position plot of x from 1.4mm to -1.4mm and y from 1.4mm to -1.4mm is obtained as shown in Figure 3. This plot depicts the linearity of the detector.

The voltage output from each electrode is plotted as a function of position. The 3D plots are shown in Figures 4, 5, 6, and 7. The output voltage gets higher as the light spot gets closer to the electrode.

The mechanical properties of the packaging are shown in Figure 8.
Sum of all 4 electrode outputs
J16PS ROOM TEMPERATURE
GERMANIUM POSITION SENSORS

Linearity Plot (x & y from -1.4mm to 1.4mm)
J16PS ROOM TEMPERATURE GERMANIUM POSITION SENSORS
Sample Final Test Data

PART NUMBER: 460284
DESCRIPTION: J16PS-P6-S10M-HS
SERIAL NUMBER: 57984-7

<table>
<thead>
<tr>
<th>Shunt Resistance R_S (ohms)</th>
<th>Dark Current I_D @ 1V (µA)</th>
<th>Dark Current I_D @ 3V (µA)</th>
<th>Junction Capacitance C_D @ 0V 10Khz</th>
<th>Junction Capacitance C_D @ 0V 1MHz</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.477</td>
<td>10</td>
<td>50</td>
<td>19pF</td>
<td>3.4pF</td>
</tr>
</tbody>
</table>

Detector Series Resistance, R_S (ohms)

<table>
<thead>
<tr>
<th>Adjacent Contacts</th>
<th>$R_S^{1.2}$</th>
<th>$R_S^{1.4}$</th>
<th>$R_S^{1.2}$</th>
<th>$R_S^{1.4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>max (R_S^{Adj})</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
<td>8.2</td>
</tr>
<tr>
<td>min (R_S^{Adj})</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
<td>8.1</td>
</tr>
</tbody>
</table>

Non-Uniformity Specification = $\leq 5\%$

Non-Uniformity = \[
\frac{\text{max} (R_S^{Adj}) - \text{min} (R_S^{Adj})}{\text{max} (R_S^{Adj})} \times 100 = 1\%
\]

Detector Interlaced Resistance R_L

<table>
<thead>
<tr>
<th>Diagonal Contacts</th>
<th>$R_S^{1.2}$</th>
<th>$R_S^{1.4}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>max (R_S^{Diag})</td>
<td>8.6</td>
<td></td>
</tr>
<tr>
<td>min (R_S^{Diag})</td>
<td>8.6</td>
<td></td>
</tr>
</tbody>
</table>

Non-Uniformity Specification = $\leq 5\%$

Non-Uniformity = \[
\frac{\text{max} (R_S^{Diag}) - \text{min} (R_S^{Diag})}{\text{max} (R_S^{Diag})} \times 100 = \%
\]

Responsivity, R_3 at 1.3µm = \[\text{[Value]}\]

Approved by: [Signature]
Date: 8/23/01
4-channel Preamplifier with 4 digitally programmable gains

Theory of Operation
This pre-amplifier can be used for testing all the four outputs of a 4 channel position sensor. There are 4 independent preamplifiers for each channel. The current output of each channel is converted to voltage using a high speed transimpedance amplifier. This voltage is further amplified with a voltage amplifier using a selection of 4 different gains. The high speed amplifier gives a 1 MHz bandwidth dependent on detectors characteristics. A chopper stabilized operational amplifier with a low maximum offset voltage of +/- 5uV removes the offset voltage of the high speed transimpedance amplifier.

Operating Instructions PA-PS: 4C, SMA, HIGH SPEED (490181)
Please refer to Drawing No. 490181POD for electrical connections and gain selections.

The power input jack has 5 pin connections. 4 digitally programmable gains can be selected via pins A & B. The gain select table depicts the gain values for the 4 combinations. The power supply required is +/- 6V. The detector connections are made to the detector input jack. The 4 outputs are accessible on the 4 SMA connectors.

SMA connector outputs OUT1, OUT2, OUT3, & OUT4 correspond to outputs Y2, X2, Y1, & X1 in the catalog for position calculations.

Specifications
Power Supply: +/-6V at 80mA
Input Offset Voltage: +/-5uV
Average Input Offset Drift: +/- 6uV/°C
Output Offset Voltage: +/-40mV max
Input Bias Current: 1.2μA
Input Noise Voltage: 6nV/rtHz at 100KHz
Input Noise Current: 9pA/rtHz
Output Impedance: 50ohms
Maximum Output Current: 25mA
Maximum Output Voltage: +/-2.5V
Bandwidth: DC to 3MHz
Selectable Gains: 200V/A, 401V/A, 804V/A, 1608V/A
GERMANIUM POSITION SENSORS

Operating Instructions:
PA-PS: 4C, Miniature, Standard (490183)
This model has a 6-pin socket to accept the position sensor, and a 20-pin connector for power supply, 4-channel outputs, and gain select control lines. The label below indicates the connections for the 20-pin connector and the position sensor. Pins 13(A0) & 15(A1) are the gain select control lines. The table below gives the 4 gain selection options depending on the TTL compatible signals supplied to A1 and A0.

<table>
<thead>
<tr>
<th>A1</th>
<th>A0</th>
<th>Gain KV/A</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>6.03</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>19.135</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>60.850</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>150.384</td>
</tr>
</tbody>
</table>

Pins 1, 3, 5, & 7 on the 20-pin connector correspond to outputs Y2, X2, Y1, & X1 in the catalog for position calculations.